contact contact
   
  30 .

 

  •  .., ..., , (. ), (. )
  •  .., ..., (. )

: ,  , .   , , 29 ,     .       (, , )   ( , , , ). ,   , . ,    . , ,  .

  1. .. // . . . 1934. 4. . 793-800.
  2. .., ..   // :  . . 1. : - . -, 1998. . 194-205.
  3. ..   //  . . . 10 (88). ., 1985. . 3-35.
  4. .. //  . . . 10(88). ., 1985. . 57-66.
  5. .., ..     //   : . . 2. , 1988. . 60-61.
  6. .., .. , // -2000: - . : - . -, 2000. . 41-45.
  7. .., .. , // -2000: - . : - . -, 2000. . 37-41.
  8. .., .. // .  . . 1. : - . -, 1998. . 61-66.
  9. .., .. . .: -, 1993. 213 .
  10. ..     . / .  . .: , 2000. 352 .
  11. .    C++ / .  . .: , 1997. 304 .
  12. ., . : / .  . .: , 1989. 478 .
  13. ., . / .  . .: , 1980. 204 .
  14. .. // . . . 2002. 6. . 22-25.
  15. ..   . - : - . -, 2002. 128 .
  16. .., ..   // :  . . 1. : - . -, 1998. . 127-138.
  17. .., .. // .  . . 1. : - . -, 1998. . 22-47.
  18. ..   , // . 1986. 4. . 87-91.
  19. ..   // .  . . 1. : - . -, 1998. . 48-60.
  20. Agarwal P.K., Suri S. Surface approximation and geometric partitions // Proc. 5th ACM-SIAM Symp. on Discrete Algorithms. 1994. P. 24-33.
  21. Akeley K., Haeberli P., Burns D. The tomesh.c program / Technical Report SGI Developer's Toolbox CD. Silicon Graphics. 1990.
  22. Arkin E., Held M., Mitchell J., Skiena S. Hamiltonian triangulations for fast rendering // Second Annual European Symposium on Algorithms. Vol. 855. Springer-Verlag Lecture Notes in Computer Science, 1994. P. 36-47.
  23. Barber C.B., Dobkin D.P., Huhdanpaa H. The Quickhull Algorithm for Convex Hulls // ACM Transactions on Mathematical Software. 1994. Vol. 22, 4. P. 469-483.
  24. Bern M., Eppstein D., Yao F. The expected extemes in a Delaunay triangulation // Inter. J. of Comp. Geom. and Appl. 1991. Vol. 1, 1. P. 79-91.
  25. Bjørke J.T. Quadtrees and triangulation in digital elevation models // International Archives of Photogrammetry and Remote Sensing, 16th Intern. Congress of ISPRS, Commission IV. Part B4. 1988. Vol. 27. P. 38-44.
  26. Chang R.C., Lee R.C.T. On the average length of Delaunay triangulations//BIT. 1984. Vol. 24. 3. P. 269-273.
  27. Edelsbrunner H., Seidel R. Voronoi diagrams and arrangements // Discrete and Computational Geometry. 1986. Vol. 8, 1. P. 25-44.
  28. Evans F., Skiena S., Varshney A. Optimizing triangle strips for fast rendering//Proc. IEEE Visualization. 1996. P. 319-326.
  29. De Floriani L. A pyramidal data structure for triangle-based surface description//IEEE Comp. Graphics and Applications. 1989. Vol. 9, 2. P. 67-78.
  30. De Floriani L., Falcidieno B., Nagy G., Pienovi C. On sorting triangles in a Delaynay tessellation//Algorithmica. 1991. 6. P. 522-535.
  31. De Floriani L., Magillo P., Puppo E. Compressing Triangulated Irregular Networks//Geoinformatica. 2000. Vol. 1, 4. P. 67-88.
  32. De Floriani L., Marzano P., Puppo E. Multiresolution Models for Topographic Surface Description//The Visual Computer. 1996. Vol. 12, 7. P. 317-345.
  33. De Floriani L., Magillo P., Puppo E., Bertolotto M. Variable resolution operators on a multiresolution terrain model//ACM 4th Workshop on Advances in Geographic Information Systems. 1996. P. 123-130.
  34. Dillencourt M.B. Finding hamiltonian cycles in Delaunay triangulations is NP-complete // Canadian Conf. on Comput. Geometry. 1992. P. 223-228.
  35. Evans F., Skiena S.S., Varshney A. Completing sequential triangulations is hard / Technical Report, Department of Computer Science, State University of New York at Stony Brook, March 1996.
  36. Fowler R.J., Little J.J. Automatic extraction of irregular network digital terrain models//Computer Graphics. 1979. Vol. 13, 3. P. 199-207.
  37. Gilbert P.N. New results on planar triangulations. Tech. Rep. ACT-15, Coord. Sci. Lab., University of Illinois at Urbana, July 1979.
  38. Graphics Library Programming Guide. Silicon Graphics, Inc. 1991.
  39. Guibas L., Stolfi J. Primitives for the manipulation of general subdivisions and the computation of Voronoi diagrams // ACM Transactions on Graphics. Vol. 4, 2. 1985. P. 74-123.
  40. Guttmann A., Stonebraker M. Using a Relational Database Management System for Computer Aided Design Data // IEEE Database Engineering. 1982. Vol. 5, 2.
  41. Heller M. Triangulation algorithms for adaptive terrain modeling // Proc. of the 4th Intern. Symp. on Spatial Data Handling, July 1990. P. 163-174.
  42. Kirkpatrik D.G. A note on Delaunay and optimal triangulations // Inform. Process. Lett. 1980. Vol. 10. P. 127-128.
  43. Kirkpatrik D.G. Optimal search in planar subdivisions // SIAM J. Comput., 1983. Vol. 12, 1. P. 28-35.
  44. Kornmann D. Fast and simple triangle strip generation / Technical Report, Varian Medical Systems Finland, Espoo, 1999. 5 p.
  45. Lawson C. Software for surface interpolation//Mathematical Software III. NY: Academic Press, 1977. P. 161-194.
  46. Lawson C. Transforming triangulations//Discrete Mathematics. 1972. 3. P. 365-372.
  47. Lee D. Proximity and reachability in the plane//Tech. Rep. N. R-831, Coordinated Sci. Lab. Univ. of Illinois at Urbana. 1978. 157 p.
  48. Lee D., Schachter B. Two algorithms for constructing a Delaunay triangulation//Int. Jour. Comp. and Inf. Sc. 1980. Vol. 9, 3. P. 219-242.
  49. Lee J. Comparison of existing methods for building triangular irregular network models of terrain from grid digital elevation models//Int. Journal of GIS. 1991. Vol. 5, 3. P. 267-285.
  50. Levcopoulos C. An lower bound for the nonoptimality of the greedy triangulation//Inform. Process. Lett. 1987. Vol. 25. P. 247-251.
  51. Levcopoulos C., Krznaric D. Quasi-greedy triangulations approximating the minimum weight triangulation//Tech. Rep. N. LU-CS-TR. Dept. of Computer Science, Lund University, Sweden. 1995. P. 95-155.
  52. Levcopoulos C., Krznaric D. Tight lower bounds for minimum weight triangulation heuristics//Inform. Process. Lett. 1996. Vol. 57. P. 129-135.
  53. Levcopoulos C., Lingas A. The greedy triangulation approximates the minimum weight triangulation and can be computed in linear time in the average case//Technical Report LU-CS-TR. Dept. of Computer Science, Lund University, Lund, Sweden, 1992. P. 92-105.
  54. Lewis B., Robinson J. Triangulation of planar regions with applications//The Computer Journal. 1978. Vol. 21, 4. P. 324-332.
  55. Lingas A. The Greedy and Delaunay triangulations are not bad…//Lect. Notes Comp. Sc. 1983. Vol. 158. P. 270-284.
  56. Lloyd E. On triangulation of a set of points in the plain//MIT Lab. Comp. Sc. Tech. Memo. 1977. 88. 56 p.
  57. Manacher G., Zobrist A. Neither the Greedy nor the Delaunay triangulation of planar point set approximates the optimal triangulation//Inf. Proc. Let. 1977. Vol. 9, 1. P. 31-34.
  58. McCullagh M.J., Ross C.G. Delaunay triangulation of a random data set for isarithmic mapping//The Cartographic Journ. 1980. Vol. 17, 2. P. 93-99.
  59. Midtbø T. Spatial Modeling by Delaunay Networks of Two and Three Dimensions. Dr. Ing. thesis. -Department of Surveying and Mapping, Norwegian Institute of Technology, University of Trondheim, February 1993.
  60. Mulzer W., Rote G. Minimum-weight triangulation is NP-hard//22nd Annual Symposium on Computational Geometry, 2006.
  61. Nagy G. Terrain visibility//Computers and Graphics. 1994. Vol. 18, 6.
  62. Plaisted D.A., Hong J. A heuristic triangulation algorithm//J. Algorithms. 1987. Vol. 8. P. 405-437.
  63. Puppo E. Variable resolution triangulations//Computational Geometry. 1998. Vol. 11. P. 219-238.
  64. Santos F., Seidel R. A better upper bound on the number of triangulations of a planar point set//J. Combin. Theory Ser. A. 2003. Vol. 102. P. 186-193.
  65. Shapiro M. A note on Lee and Schachter's algorithm for Delaunay triangulation//Int. Jour. of Comp. and Inf. Sciences. 1981. Vol. 10, 6. P. 413-418.
  66. Sibson R. Locally equiangular triangulations//Computer Journal. 1978. Vol. 21, 3. P. 243-245.
  67. Sloan S.W. A fast algorithm for constructing Delaunay triangulations in the plane//Adv. Eng. Software. 1987. Vol. 9, 1. P. 34-55.
  68. Speckmann B., Snoeyink J. Easy triangle strips for TIN terrain models//Proc. of 9th Canadian Conference on Comput. Geometry, 1997. P. 239-244.
  69. Stewart A.J. Tunneling for triangle strips in continuous Level-of-Detail meshes//Graphics Interface. 2001, June. P. 91-100.
  70. Touma G., Rossignac J. Geometric compression through topological surgery//ACM Transactions on Graphics. 1998. Vol. 17, 2. P. 84-115.
  71. Voronoi G. Nouvelles applications des parameters continues à la therie des formes quadratiques. Deuxième Mémorie: Recherches sur les parralléloèddres primitifs//J. reine angew. Math. 1908. 134. P. 198-287.
  72. Watson D.F. Computing the n-dimensional Delaunay tessellation with application to Voronoi polytopes//The Computer Journal. 1981. Vol. 24, 2. P. 167-172.